Work with asbestos insulating board

INTRODUCTION

1. This guidance note provides information for those who work in buildings containing asbestos insulating board on the identification of the material; the nature of the risks arising from its presence and from the most common work activities involving it in maintenance or other construction work; and on the precautions required to provide protection from these risks.

2. Information on the specific legislative requirements relating to work with asbestos insulating board and on other useful sources of guidance is given in paragraphs 51-59.

THE COMPOSITION AND PROPERTIES OF ASBESTOS INSULATING BOARD

3. Asbestos insulating board has the appearance of a grey or off-white fibre board or tile, typically 6-12mm thick (although it may be up to 50mm thick). Insulating board differs from asbestos cement in that it is a softer material and contains more asbestos. In some cases, finishes such as paints and resins have been applied to the board, or it may have been laminated on one or both sides with other materials. The board has a firm surface, but it may become friable with age, damage or deterioration.

4. The asbestos content of asbestos insulating board is typically 16.25%. All three major forms of asbestos: amosite (brown), chrysotile (white) and crocidolite (blue), have been used in insulating board but amosite has been most frequently used.

USES OF ASBESTOS INSULATING BOARD

5. Insulating board manufactured in the UK since 1980 does not contain asbestos and substitute compositions were widely available before that date. However asbestos board manufactured previously or imported may have continued to be used or installed after 1980.

6. The major use of asbestos insulating board was for fire protection to buildings. It was also used for insulation purposes and as a structural component, particularly where resistance to damp, humidity or changing temperature conditions was required. Asbestos insulating board is therefore liable to be encountered in a wide variety of places and in particular:
 (a) as fire protection on doors, protected exits, structural steelwork etc;
 (b) as cladding for fire protection or insulation on walls, ceilings, joists, vertical steelwork and some industrial plant;
 (c) as an insulating layer in the construction of composite walls;
 (g) in the construction of internal walls or partitions;
 (e) in the construction of service or ventilation ducting, and pipe covering;
 (f) for lining porches, canopies and other semi-exposed areas;
 (g) in switchgear;
 (h) as ceiling tiles in industrial and commercial buildings.

IDENTIFICATION

7. Whenever it is necessary to work on, or disturb an insulating board or tile, its composition should first be determined so that any necessary precautions can be taken before the work is started. The presence of asbestos insulating board may be indicated on original building plans or specifications. Information about the presence and type of board may also be available from the architect or builder who constructed the building, or from the original supplier of the insulating board if known. A voluntary labelling scheme was introduced for asbestos board products in 1976 using an 'a' logo to indicate the presence of asbestos. However, very little asbestos insulating board found in existing buildings is likely to bear this label. The brand names of the most common asbestos insulating board are Asbestolux, LDR, Turnasbestos and Marinite.

8. Where specific confirmation of the composition of the insulating board is needed the only satisfactory method of determining the presence of asbestos is by bulk sampling and analysis. Sampling and identification poses a risk of
exposure and should only be undertaken when the alternatives above have been exhausted and there is a specific need for confirmation of the presence of asbestos or of a certain type of asbestos. Once asbestos has been identified, records should be made and kept available for any future work activity.

9 Bulk sampling determines the presence of asbestos and its type. Sampling should be undertaken by a suitably trained and experienced person.

10 Because the boards will normally be of uniform composition, there should in most cases be little difficulty in selecting a site for sampling which is not only representative but also readily accessible and, importantly, can be easily cleaned and repaired after sampling. Asbestos insulating board may, however, have been repaired or extended with non-asbestos materials; it is therefore important to examine all material for changes in characteristics or modifications/repair which may indicate a different composition and to ensure that samples are taken from all the types of material present. Removal of samples must not compromise any fire resisting properties of the structure.

11 Sampling techniques used should minimise the release of fibre and cause the minimum disturbance to the rest of the installation. This is particularly important when working overhead. Paragraph 21 describes the precautions to be taken when sampling for asbestos insulating materials.

12 If crocidolite (blue asbestos) is found at least 28 days written notice (or such shorter notice as may be agreed) must be given to HM Factory Inspectorate (HMFI) before any work on the material to which the Asbestos Regulations 1969 apply (see paragraph 51). If it is decided to treat a given substance as containing crocidolite, and to notify HMFI accordingly, there is no need to confirm the presence of crocidolite by testing.

AIR MONITORING AND CONTROL LIMITS

13 Where the exposure of a person working with asbestos insulating board to asbestos dust in air is in question, his actual exposure can only be determined by means of air monitoring. Guidance Note EH 10 gives information on air monitoring techniques and Control Limits for asbestos dust. Control Limits for asbestos, with effect from 1 August 1984, are:

for dust consisting of or containing any crocidolite or amosite 0.2 fibre/ml when measured or calculated in relation to a 4-hour reference period

for dust consisting of or containing other types of asbestos but not crocidolite or amosite 0.5 fibre/ml when measured or calculated in relation to a 4-hour reference period

RISK OF EXPOSURE AND FIBRE RELEASE

14 Insulating board, when undisturbed and in good condition, will release very little asbestos fibre. If the board is disturbed or subjected to mechanical damage, either deliberate or accidental, or if there is a significant deterioration or if work is carried out on the board, fibre will be released.

15 The extent of any fibre release will depend on the nature of the work or disturbance and the type and proportion of asbestos present in the board. Boards containing crocidolite or amosite are liable to release more fibre than boards containing chrysotile. Most work activities involving insulating board, particularly board containing amosite and crocidolite, are liable to produce dust levels in excess of the control limit, typically between 1 and 5 fibre/ml. Some activities such as drilling overhead, sanding, machining and sawing are liable to produce higher dust levels, possibly of the order of 10-20 fibre/ml or more. Guidance Note EH 35 Asbestos Dust concentrations at Construction Processes gives details of likely asbestos dust levels at such processes.

PREVENTION OF DAMAGE OR DETERIORATION

16 When asbestos insulating board is found where it is liable to generate asbestos dust, for example by being damaged by impact or abrasion, precautions should be taken either to prevent damage by means of barrier or enclosure around the board or to minimise the effects of damage by treating the surface of the material.

17 The simplest, and usually the least expensive, way to prevent dust release from damaged or deteriorating insulating board is by a surface coating or covering. Various materials can be used including paints or similar polymeric coatings, cement or plasters. Alternatively, the surface can be encased in a suitable cladding material. The treatment chosen will depend on the particular circumstances, the degree of protection required, the function of the insulating board (i.e. whether it is used for fire protection) and its condition. If the insulating board is in very poor condition or liable to heavy wear or damage, the most practical solution will be to remove the board completely. Whatever treatment is chosen, suitable precautions should be taken (paragraphs 22 and 23).

PRECAUTIONS FOR WORK INVOLVING ASBESTOS INSULATING BOARD

18 Any work activity involving insulating board should be planned to ensure that the release of any asbestos dust is reduced to the minimum reasonably practicable. For new work, insulating board containing asbestos should not be used, as adequate alternatives are available. Where the process inevitably creates dust, precautions must be taken to minimise its spread and to protect workers and others in the vicinity from the dust. If it can be anticipated that dust levels may exceed the Control Limits suitable respiratory protective equipment of a type approved by the Health and Safety Executive (HSE) should be provided and worn.
19 The precautions necessary will be dictated by the nature and extent of the work, the asbestos content of the board, and its condition. It is the responsibility of the person in charge of the work to ensure that the precautions are adequate. Paragraphs 21 to 50 suggest adequate precautions for various types of work.

20 People working with asbestos insulating board should be told of the hazards and adequately trained in safe working methods, the correct use of respiratory protective equipment etc before work commences.

PRECAUTIONS WHEN TAKING SAMPLES
21
(a) If the work involves cutting, boring, drilling etc., or if the board is friable, suitable approved respiratory equipment and protective clothing should be provided and worn;
(b) no other person should be in the immediate vicinity of the work;
(c) wherever possible, the area of insulating board to be sampled should be thoroughly wetted;
(d) the sample should be taken using a hand tool (e.g. knife, cork borer or hand drill) and placed in a small sealable container (e.g. self-sealing polythene bag or stoppered bottle), which should be suitably labelled;
(e) surfaces onto which dust/debris may fall should be covered with an impervious sheet before the sample is taken (unless the surface itself is impervious) and should be cleaned afterwards by a dustless method such as a suitable vacuum cleaner with a high efficiency filter or a damp cloth which should be disposed of in a sealed bag whilst still damp.
(f) the hole or newly exposed surface should be treated with a suitable sealant which does not adversely affect the fire protection or structural integrity of the material.

THE APPLICATION OF SURFACE COATING
22 The following precautions should be taken when applying coating to previously uncoated, damaged or friable surfaces:
(a) The working area should be clearly demarcated with warning signs and, if appropriate, barriers, and only those engaged in the work allowed to enter;
(b) moveable equipment etc liable to be contaminated should be cleared from the area and other equipment covered with disposable or easily cleaned impervious sheeting;
(c) protective clothing i.e. overalls and, if necessary, head covering, should be provided and worn. Contaminated clothing should never be taken home for cleaning; it should be sealed in an impervious bag labelled 'Asbestos contaminated clothing', and sent to a laundry equipped to deal with contaminated clothing or, if appropriate, disposed of;
(d) where exposure to dust levels is liable to exceed the Control Limits, workers should be provided with and should wear suitable approved respiratory protective equipment;
(e) all surfaces, including those to be sealed, should be cleaned to remove any loose dust by dustless method (i.e. a vacuum cleaner fitted with a high efficiency filter; or where this is not reasonably practicable a damp cloth may be used provided it is not allowed to dry out, is sealed in a suitably labelled dust-tight impermeable bag immediately the job is completed and disposed of as asbestos containing waste);
(f) the method of application should be selected and care taken during application to minimise surface disturbance;
(g) all surfaces in the working area should be cleaned by a dustless method on completion of the job and before the segregated area is returned to normal use;
(h) before leaving the working area, protective clothing should be vacuum cleaned if there is any obvious contamination by dust and debris; disposable items must be carefully removed and sealed in a suitably labelled dust-tight impermeable bag for disposal; if crocidolite dust is present, the bags must be labelled as containing crocidolite;
(i) washing and changing facilities should be provided (see paragraph 24(g)).

23 In addition, precautions similar to those for planned work activities (paragraphs 25 to 50) should be taken where any of the following are or are likely to be involved:
(a) removal of old sealant or surface covering (e.g. paper, plaster);
(b) mechanical breaking of the surface for any reason (e.g. to provide surface roughness for adhesion of new treatment);
(c) treatment of a broken or friable surface which contains amosite or crocidolite.

MAINTENANCE ACTIVITIES OF SHORT DURATION
24 The following precautions should be adopted where the release of asbestos dust or contamination of surrounding areas is possible, even for short duration work, particularly if crocidolite or amosite are likely to be present, since even minor jobs could give rise to asbestos dust levels above the Control Limit. Such work activities will include the removal of insulating boards or tiles for maintenance purposes where there is a possibility that the boards or tiles may be damaged or machining operations such as drilling, cutting, sawing etc and the removal of ceiling tiles. Machining or breaking of board containing amosite or crocidolite may create a localised concentration of asbestos
containing crocidolite or amosite, may do the same.

(a) Those not engaged in the activity should not be permitted in the vicinity of the work, and should preferably not remain in the same room when the work is carried out. (If necessary, signs and barriers should be erected around the work position);

(b) Those engaged in the work should wear suitable approved respiratory protective equipment. If the work can be carried out carefully and is of short duration, an oronasal respirator should suffice. If it is necessary to break the insulating board containing crocidolite or amosite, or cutting is to be carried out, then a higher efficiency respirator will be required (see paragraphs 32 to 36);

(c) Suitable overalls or protective clothing should be worn by those engaged in the work. If working overhead, this should include a hood or other head covering. If the overalls become contaminated by asbestos dust they should be sealed in an impervious container, suitably marked, and sent to be cleaned or disposed of;

(d) Equipment etc in the vicinity of the work should be removed or covered in an impervious sheet before work begins;

(e) Working methods should be chosen carefully to minimise dust release. Hand tools should be used rather than machines and boards should be carefully removed, not broken. Where possible, the insulating board should be wetted before work begins. If the board contains crocidolite or amosite, a little detergent should be added to the water. (Care should be taken to prevent the water and detergent from making the floor slippery);

(f) On completion of the work, surfaces etc should be thoroughly cleaned of dust and debris by a dustless method (see paragraph 22(e));

(g) Washing and changing facilities should be provided and used. For small operations where contamination is minimal, it will be acceptable to use the normal facilities in a building (i.e. cloakrooms etc) for the storage of clean clothing and for washing. Any contaminated protective clothing should not be taken outside the work area unless sealed in suitably labelled impervious container (e.g. plastic bag). If contamination of hands and arms is likely, a basin or bowl should be provided for washing adjacent to the work area. If bodily contamination and/or heavy contamination of protective clothing is likely, decontamination facilities as described in paragraph 42 should be provided and used.

MAJOR WORK ACTIVITIES

25 The precautions described in paragraphs 26 to 50 are

necessary for all major work activities involving asbestos board not dealt with in paragraphs 20 to 24. These precautions are particularly important where it is necessary to break up insulating board as it is removed or where power tools are used. Under some circumstances, these operations can produce asbestos dust levels comparable to those produced during the stripping of asbestos lagging or surface coating.

Site preparation

26 Before starting work all moveable equipment liable to become contaminated by dust and debris generated during the work should be cleared from the work area. Fixed equipment and other surfaces should be covered with impervious sheeting which is disposable or easily cleaned.

27 The working area should be enclosed as far as is reasonably practicable to prevent the spread of dust and debris, as follows:

(a) all external openings from the working area including doors and windows should be sealed to prevent the escape of asbestos dust. Adhesive tape may be used where effective dust-tight joints are required;

(b) where the working area forms only a part of the building:

(i) it should be separated from the remainder;

(ii) use should be made of existing partitions provided they can be sealed to prevent the escape of asbestos dust so far as is reasonably practicable;

(iii) care should be taken to ensure that dust cannot escape at points where pipes and conduits pass through partitions;

(iv) where it is not possible to make use of an existing partition, suitable impervious sheeting should be used to separate the working area from the remainder;

(v) impervious sheeting used as an enclosing medium should be strong and firmly supported; and

(vi) arrangements should be made for the construction of suitable entry/exit locks in the enclosure into the working area;

(c) the enclosure should not impede means of escape in case of fire;

(d) notices should be posted at each entrance to the asbestos working area warning that entry without suitable protective equipment is prohibited.

28 Where it is not reasonably practicable to enclose the asbestos working area to prevent the escape of dust, effective steps should be taken to prevent access, including the marking of the boundaries with physical obstruction such as ropes or barriers. Arrangements should ensure that:

(a) barriers are placed around the area at a distance where it can be reasonably anticipated that people do not need respiratory protective equipment and protective clothing;
(b) sufficient notices should be place at intervals along the barriers to show their purpose and to warn that entry into the working area without suitable protective equipment is prohibited.

29 Only essential personnel wearing suitable personal protective equipment should be allowed to enter the asbestos working area.

Working methods and planning

30 All those involved must be properly trained and provided with information about the work procedures to be adopted, the risks of exposure to asbestos and the precautions to be taken.

31 Working methods should be selected and planned in advance in order to minimise the amount of dust liable to be generated. The following factors should be taken into account:

(a) the work should be planned to minimise the number of operations performed on the board and in particular, to avoid operations which may cause breakage or serious damage;

(b) where asbestos insulating board has to be cut to size, this should where possible be carried out off-site either by the suppliers or by specialist board cutters;

(c) hand tools rather than power tools should be used;

(d) when the use of power tools is unavoidable, local exhaust ventilation equipment should be fitted with the dust hood as close to the cutter as possible;

(e) air extraction equipment should be provided for enclosed areas where reasonably practicable in order to reduce dust and provide a slight negative pressure which will reduce the risk of dust escaping from the enclosure. This should be fitted with a high efficiency filter and where reasonably practicable be vented to a point outside the building.

Respiratory protective equipment

32 Respiratory protective equipment should be provided and used. This should be of an approved type, as listed in the Schedule to the current Certificate of Approval (Respiratory Protective Equipment) which is published annually by HMSO as Form 2486.

33 The respiratory protective equipment should be suitable for the job, i.e. it should give sufficient protection and should be comfortable to wear. For most work with asbestos insulating board, unless exposure is small, a high standard of protection is required. A high efficiency or positive pressure respirator will therefore be necessary. If the work is strenuous or likely to last more than 30 minutes, a positive pressure respirator is preferred.

34 Care should be taken to ensure that the respirator provides a good fit and seals well to the wearer's face. If the seal is poor or the wearer has facial hair, the respirator may not give adequate protection, and a positive pressure blouse is to be preferred.

35 Where respiratory protective equipment is provided and used, the following points should be noted:

(a) persons who are required to use respiratory protective equipment should be adequately trained to do so;

(b) suitable accommodation should be provided for respiratory protective equipment so that it is put away in suitable containers or lockers when not in use. Where there is the possibility of contamination, a cleaned respirator may be conveniently sealed in a plastic bag. With a powered respirator or breathing apparatus it is recommended that only the facepiece be put into a plastic bag;

(c) respirators should be disinfected, washed and cleaned at the end of every shift. They should be issued from and returned to a central point. After thorough cleaning, checks should be made on the condition of the facepiece, head straps, inlet and exhaust valves. For positive pressure respirators fitted with battery driven air supplies, the battery should be recharged as necessary. Manufacturer's guidance should be followed at all times;

(d) The part of the respiratory protective equipment incorporating the facepiece should be a personal issue. Before it is passed to anyone else it should be thoroughly cleaned and disinfected.

36 Further information and guidance on the selection, use and maintenance of respiratory protective equipment is contained in British Standard BS 4275 and EH41. Respiratory protective equipment for use against asbestos.

Protective clothing

37 Protective clothing should be provided for workers liable to become contaminated by asbestos dust, and should incorporate the following features:

(a) overalls should be:

(i) made from material which does not readily retain asbestos dust and prevents, so far as is reasonably practicable, its penetration;

(ii) close fitting at the neck, wrists and ankles;

(iii) without external pockets or unnecessary pleating or accessories; and

(iv) wherever reasonably practicable, with integral headcovering.

(b) headcovering should be provided and worn if hair is liable to become contaminated, for example, when working overhead and should be:

(i) made from material which does not readily retain asbestos dust and prevents, so far as is reasonably practicable, its penetration; and

(ii) close fitting.

(c) footwear should be of plain design so that asbestos is not retained in crevices.

38 Protective clothing should not be worn outside the
working area or contaminated side of the washing/changing rooms, but see paragraph 43.

39 Protective clothing (and any personal clothing which has become contaminated) should be laundered as frequently as is necessary to ensure its cleanliness. This should be done by a launderer who is equipped and able to deal with asbestos contaminated clothing. Before it is sent to the laundry, protective clothing should be sealed in strong, dust-tight containers which are boldly marked ‘Asbestos contaminated clothing’.

Hygiene facilities

40 Hygiene facilities should be provided and used.

41 For short term activities and small operations where bodily contamination is unlikely to occur, the following standards should be adequate (see also paragraph 24):

(a) Simple washing facilities, e.g. a bowl of water and towel adjacent to the working position to allow the worker to wash his hands and arms;

(b) Provision for the storage of protective clothing adjacent to the working area and separate from other clothing accommodation.

42 For activities where protective clothing is liable to become significantly contaminated or bodily contamination is possible, particularly where crocidolite or amosite are involved, the hygiene facilities should include:

(a) arrangements for removal and replacement of clothing worn to and from work together with storage for such clothing;

(b) arrangements, separated from the above, for removal and replacement of protective clothing and respiratory protective equipment together with storage for such clothing and equipment;

(c) arrangements to ensure that the airflow is such as to prevent the movement of contaminated air into the clean side of the facility;

(d) showering facilities which include provision for disposal of contaminated water as agreed with the appropriate water authority; and

(e) suitable means for maintaining an adequate temperature in the facilities.

In order to avoid further contamination, the facilities should be laid out in a way that deters people who use them returning to the “dirty” conditions area, and any person moving between the two areas is required to pass through the washing facilities.

43 Protective equipment should always be vacuum cleaned before entry into hygiene facilities. Whenever possible these should adjoin the asbestos working area to prevent the contamination of other areas. When this is not possible:

(a) they should be as close to the working area as circumstances will allow; and

(b) supplementary facilities should be provided next to the working area which allow a worker to:

(i) remove and store first protective clothing; and

(ii) don transit clothing to allow him to go to the main hygiene facilities.

Colour coding of transit clothing will avoid confusing it with protective clothing.

44 To ensure easy cleaning of the hygiene facilities, the surfaces of floors, ceilings, walls and fittings should be smooth and impervious.

Cleaning

45 The working area should be cleaned regularly to remove accumulations of asbestos dust and debris. The frequency of cleaning will depend on the particular job, but as a minimum will include:

(a) cleaning of any surfaces which may have become contaminated before work starts;

(b) cleaning at intervals during the working period if accumulations of debris are liable to be disturbed as the work progresses;

(c) cleaning up debris at the end of each shift;

(d) thorough cleaning and decontamination of all surfaces equipment etc which may have become decontaminated when the work is completed.

46 Cleaning should be carried out by a dustless method i.e. by the use of a suitable vacuum cleaner filter with a high efficiency filter and/or washing down. For small, localised work it may be sufficient to wipe down contaminated surfaces with a damp cloth and seal the cloth in an adequately labelled impervious container for disposal.

Asbestos waste disposal

47 Any container used for the disposal of asbestos waste should be:

(a) made from an impermeable material;

(b) strong enough to remain dust tight even under wet conditions; and

(c) adequately labelled. Where crocidolite is present it should be boldly marked ‘BLUE ASBESTOS — DO NOT INHALE DUST'. The markings should be durable and of a type which cannot become detached from its container.

48 When each container is filled:

(a) it should be sealed to prevent the escape of dust during handling, transportation and disposal;

(b) its external surface should be cleaned; and

(c) it should be removed from the immediate working area to await removal to an authorised tip.

A system should be set up to ensure that the individual containers awaiting removal to an authorised waste tip are...
kept in an area set aside for storage.

49 Detailed guidance on asbestos waste disposal is contained in the Department of the Environment Waste Management Paper No. 18 Asbestos Wastes — A Technical Memorandum on Arisings and Disposal, including a Code of Practice.

50 Asbestos waste should be disposed of only:
(a) at a waste disposal site licenced for the purpose by the appropriate waste disposal authority; and
(b) in accordance with the requirements of that authority.

LEGISLATION AND OTHER SOURCES OF GUIDANCE

51 The Asbestos Regulations 1969 apply to all factories and to certain other premises to which Part VII of the Factories Act 1961 applies including building operations, work of engineering construction, electrical stations and ships under construction or repair etc, where a process involving asbestos is undertaken, except a process in which asbestos dust cannot be given off. 'Asbestos' is defined in Regulations 2(2) as meaning "any of the following minerals, that is to say cricidolite, amosite, chrysotile, fibrous anthophyllite and any mixture containing any of the said minerals". 'Asbestos dust' is defined in Regulation 2 as "dust consisting of or containing asbestos to such an extent as is liable to cause danger to the health of employed persons".

52 Some asbestos work activities will not attract the Asbestos Regulations because the Factories Act 1961 does not apply to the premises in which the work is being carried out. Nevertheless, the Health and Safety at Work etc Act 1974 will always apply and in order to comply with the general obligations under Sections 2, 3, 4 and 7 the same methods of work and the same standards of health and safety should be adopted as if the regulations applied.

53 The Approved Code of Practice and Guidance Note: Work with asbestos insulation and asbestos coating (Revised June 1983) provides practical guidance on the relevant legislation concerning the risk to health from asbestos during work involving thermal and acoustic insulation including structural fire protection and sprayed coating. It does not apply to work involving asbestos insulating board when its thermal or acoustic properties are incidental to its main function.

54 Guidance on Control Limits, measurement of airborne concentrations and assessment of control measures is given in HSE Guidance Note EH 10 Asbestos Control Limits—measurement of airborne dust concentrations and assessment of control measures.

55 Guidance on likely dust concentrations at construction processes involving materials containing asbestos is given in HSE Guidance Note EH 35, Probable asbestos dust concentrations in construction processes.

56 Information on respiratory protective equipment approved for use with asbestos is given in the Certificate of Approval (Respiratory Protective Equipment) 1983 (F2486 (1984). F2486 is issued annually.

57 The Control of Pollution (Special Waste) Regulations 1980 place duties on those who produce transport or dispose of waste containing asbestos.

58 Detailed guidance on asbestos wastes disposal is contained in the Department of Environment Waste Management Paper No. 18 Asbestos Wastes — A Technical Memorandum on Arisings and Disposal, including a Code of Practice.

59 All of the above publications are available from Her Majesty's Stationery Office.
GUIDANCE NOTES

General Series
GS 1 Fumigation using methyl bromide
GS 2 Metrication of construction safety regulations
GS 3 Fire in the storage and industrial use of cellular plastics
GS 4 Safety in pressure testing
GS 5 Entry into confined spaces
GS 6 Avoidance of danger from overhead electrical lines
GS 7 Accidents to children on construction sites
GS 8 Articles and substances for use at work - guidance for designers, manufacturers, importers, suppliers, erectors and installers
GS 9 Road transport in factories
GS10 Roofwork: prevention of falls
GS11 Whisky cask racking
GS12 Effluent storage on farms
GS13 Fire in the storage and industrial use of cellular plastics
GS14 Provision of sanitary conveniences and washing facilities in agriculture
GS15 General access scaffolds
GS16 Gaseous fire extinguishing systems: precautions for toxic and asphyxiating hazards
GS17 Safe custody and handling of stock bulls on farms and at artificial insemination centres
GS18 Commercial ultra-violet tanning equipment
GS19 General precautions aboard ships being fitted out or under repair
GS20 Fire precautions in pressurised workings
GS21 Assessment of radio frequency ignition hazards

Chemical Safety Series
CS 1 Industrial use of flammable gas detectors
CS 2 The storage of highly flammable liquids
CS 3 Storage and use of sodium chlorate
CS 4 The keeping of LPG in cylinders and similar containers
CS 5 The storage of LPG at fixed installations
CS 6 The storage and use of LPG on construction sites

Plant and Machinery Series
PM 1 Guarding of portable pipe-threading machines
PM 2 Guards for planing machines
PM 3 Erection and dismantling of tower cranes
PM 4 Safety at high temperature dyeing machines
PM 5 Automatically controlled steam and hot water boilers
PM 6 Dough dividers
PM 7 Lifts
PM 8 Passenger carrying paternosters
PM 9 Access to tower cranes
PM10 Tripping devices for radial and heavy vertical drilling machines
PM13 Zinc embrittlement of austenitic stainless steel
PM14 Safety in the use of cartridge operated tools
PM15 Safety in the use of timber pallets
PM16 Eyebolts
PM17 Pneumatic nailing and stapling tools
PM18 Locomotive boilers
PM19 Use of lasers for display purposes
PM20 Cable-laid slings and grommets
PM21 Safety in the use of woodworking machines
PM22 Mounting of abrasive wheels
PM23 Photo-electric safety systems
PM24 Safety at rack and pinion hoists
PM25 Vehicle finishing units: fire and explosion hazards
PM26 Safety at lift landings
PM27 Construction hoists
PM28 Working platforms on fork lift trucks
PM29 Electrical hazards from steam/water pressure cleaners etc
PM30 Suspended access equipment
PM31 Chain saws
PM32 The safe use of portable electrical apparatus
PM33 Safety of bandsaws in the food industry
PM34 Safety in the use of escalators

Medical Series
MS 3 Skin tests in dermatitis and occupational chest disease
MS 4 Organic dust surveys
MS 5 Lung function
MS 6 Chest x-rays in dust disease
MS 7 Colour vision
MS 8 Isocyanates - medical surveillance
MS 9 Bysinosis
MS10 Beat conditions and tenosynovitis
MS12 Mercury - medical surveillance
MS13 Asbestos
MS15 Welding
MS16 Training of offshore sick-bay attendants (rig-medics)
MS17 Biological monitoring of workers exposed to organophosphorous pesticides
MS18 Health surveillance by routine procedures
MS20 Pre-employment health screening

Environmental Hygiene Series
EH 2 Chromium - health and safety precautions
EH 4 Aniline - health and safety precautions
EH 5 Trichloroethylene - health and safety precautions
EH 6 Chromic acid concentrations in air
EH 7 Petroleum based adhesives in building operations
EH 8 Arsenic - health and safety precautions
EH 9 Spraying of highly flammable liquids
EH10 Asbestos - Control Limits measurement of airborne dust concentrations and assessment of control measures.
EH11 Arsine - health and safety precautions
EH12 Stibine - health and safety precautions
EH13 Beryllium - health and safety precautions
EH14 Level of training for technicians making noise surveys
EH16 Isocyanates: toxic hazards and precautions
EH17 Mercury - health and safety precautions
EH18 Toxic substances; a precautionary policy
EH19 Antimony - health and safety precautions
EH20 Phoshpine - health and safety precautions
EH21 Carbon dust - health and safety precautions
EH22 Ventilation of buildings; fresh air requirements
EH23 Anthrax - health hazards
EH24 Dust accidents in malthouses
EH25 Cotton dust sampling
EH26 Occupational skin diseases: health and safety precautions
EH27 Acrylonitrile: personal protective equipment
EH28 Control of lead: air sampling techniques and strategies
EH29 Control of lead: outside workers
EH30 Control of lead: pottery and related industries
EH31 Control of exposure to polivinyl chloride dust
EH32 Control of exposure to talc dust
EH33 Atmospheric pollution in car parks
EH34 Benzidine based dyes
EH35 Ozone: health hazards and precautionary measures
EH40 Occupational exposure limits 1984